Lyophilized Exosome Standards (2nd Generation)

REFERENCE	SIZE	DESCRIPTION
ExoPC3	100 µg	Exosomes from PC-3, a human metastatic prostate cancer cell line
ExoHT29	100 µg	Exosomes from HT-29, a human colon cancer <u>cell line</u>
ExoMCF7	100 µg	Exosomes from MCF-7, a human breast cancer cell line
ExoSERUM	100 µg	Exosomes from human serum
ExoA-375	100 µg	Exosomes from A-375, a human malignant melanoma cell line
EXORPMI	100 µg	Exosomes from RPMI8226, a human myeloma cell line
EXOCaCo2	100 µg	Exosomes from CaCo2 a human colon cancer cell line

INTRODUCTION

Exosomes are small extracellular vesicles that are released from cells upon fusion of an intermediate endocytic compartment, the multivesicular body (MVB)1, with the plasma membrane. They are thought to provide a means of intercellular communication^(2,3) and of transmission of macromolecules between cells allowing the spread of proteins, lipids, mRNA, miRNA and DNA and as contributing factors in the development of several diseases. Exosomes can also modulate cancer microenvironment(4) and the immune response (5,6)

PRODUCT DESCRIPTION

Lyophilized exosomes (~1x1012) derived from human cancer cell line (8,9). Exosomes are isolated by differential ultracentrifugation (7).

- Tested application: Flow Cytometry (FMC), Nanoparticles Tracking Analysis (NTA, Nanosight), Western Blot (WB), BCAProtein Assay.
- Species reactivity: Human
- Presentation: Lyophilized
- Reconstitution of Exosomes: For reconstitution, we recommended adding sterile, distilled water to achieve a final exosome concentration of $1\mu g/\mu l$ (e.g., for 100 μg standard, add 100 μl of dH2O). After the addition of water, recap vial and briefly vortex making sure that the liquid has been gently distributed and has covered the entire inside of the vial. After vortexing, make sure that the solution is collected at the bottom of the vial, if not, centrifuge shortly the vial solution. Now the standard is ready to use.

APPROPIATE STORAGE AND HANDLING CONDITIONS

Lyophilized exosomes can be stored between 2°C and 8°C for up to 2 years without functional compromise. Immunostep recommends storing small, single -use aliquots of reconstituted exosomes, at - 20°C for up to one month or at - 80°C for longer periods, preferably in locations in frost-free freezers, without appreciable temperature fluctuation. This will minimize protein denaturation that can occur after multiple freeze/thaw cycles.

Reconstituted exosomes, store properly, are functionally quaranteed for up to six months from date of reconstitution. Any unfrozen and/or unused exosome standard can be stored at 4°C for short term use (<1 week), and should not be re-frozen.

EVIDENCE OF DETERIORATION

Reagents should not be used if any evidence of deterioration is observed. For more information, please contact our technical service; tech@immunostep.com

5. **BIOSAFETY LEVEL 1**

Biosafety classification is based on 2000/54/EC Directive from the European Council. Customer has to ensure that their facilities comply with biosafety regulations for their own country

WARRANTY

Warranted only to conform to the quantity and contents stated on the label or in the product labelling at the time of delivery to the customer. Immunostep disclaims hereby other warranties. Immunostep's sole liability is limited to either the replacement of the products or refund of the

7. PERFORMANCE DATA

All exosome standard batches has been validated using FCM, WB and NTA Analysis, additionaly, in order to compare the effects of lyophilization process we have compared all lyophilized batches with respect to fresh exosomes stored at -20°C. Exosome batches are checked and compared for the presence of the CD63 and CD9, a common exosome marker, by FCM (Fig. 1) and WB (Fig. 2).

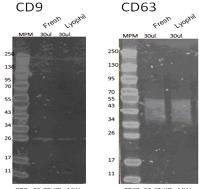



Figure 1: Dynamic range of fresh A and lyophilized B PC3 exosomes analyzed by flow cytometry. Relationship between background noise and specific signal at different exosome concentrations. Exosomes were captured by CD63+ (Clone TEA3/18) capture beads and subsequently detected by Anti-CD9 PE (Clone VJI/20)

CD9: 25-27 KDa MW CD63: 30-60 KDa MW
Figure 2: Fresh and Ivophilized MCF-7 exosome batches were analyzed and compared by WB in native conditions for exosomal markers, by anti-CD9 (Clone VJI/20) and anti-CD63 (Clon TEA3/18) antibodies at a 1:1000 dilution(0.1 mg/ml).

All exosome batches are also subjected to NTA Analysis to test for particle size and concentration (Fig. 3).

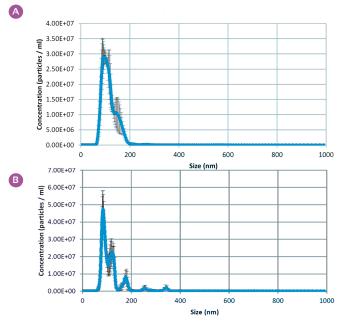


Figure 3: Exosome analysis and comparative of fresh and lyophilized serum exosomes for particle size and concentration by NTA, NanoSight LMIOHSB. A ysis was carried out **B** I µl of purified exosomes diluted in 999 µl of HEPES buffer (diution 1:1000). The purified exosomes showed a size distribution profiles, with peak diameters from 50 - 150 nm and concentrations about 1x1010 exosomes/ml.

8. REFERENCES

- Yáñez-Mó M, Siljander P, Andreu Z, Bedina Zavec A, Borràs F, Buzas E et al. Biological properties of extracellular vesicles and their physiological functions, Journal of Extracellular Vesicles, 2015;4(1):27066
- Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016
- Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. 2016 Cell 10:164(6):1226-32
- Becker A, Thakur BK, Weiss JMI, Kim HS, Peinado H, Lyden D Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis, Cancer Cell 2016 Dec 12:30(6):836-848
- López-Cobo S, Campos-Silva C, Valés-Gómez M. Glycosyl-Phosphatidyl-Inositol (GPI)-Anchors and Metalloproteases: Their Roles in the Regulation of Exosome Composition and NKG2D-Mediated Immune Recognition. Front Cell Dev Biol. 2016 Sep 12;4:97.
- Jonathan M. Pitt, Guido Kroemer, Laurence Zitvogel Extracellular vesicles: masters of intercellular communication and potential clinical interventions. 2016 J Clin Invest. 2016;126(4):1139-1143
- Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006 Apr; Chapter 3:Unit 3.22
- Campos S, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martínez-Piñeiro L, Yáñez-Mó M, Valés-Gómez M. High sensitivity detection of extracelular vesicles immune-captured from urine by conventional flow citometry.
- Jara-Acevedo R, Campos-Silva C, Valés-Gómez M, Yáñez-Mó M, Suárez H, Fuentes M. Exosome beads array for multiplexed phenotyping in cancer. J Proteomics. 2019; Apr 30;198:87-97.

9. MANUFACTURED BY

IMMUNOSTEP S.L.

Address: Avda, Universidad de Coimbra, s/n Cancer Research Center (C.I.C)

Campus de Unamuno 37007 Salamanca (Spain) Telf./fax: (+34) 923 294 827

info@immunostep.com www.immunostep.com