

Bee and/or wasp venom allergy and indications for VIT

Discover the connection

ImmunoCAP venom components

Matching VIT to the patient's sensitization profile

 Successful venom immunotherapy (VIT) is more likely when treatment selection is based on genuine sensitization to bee and/or wasp venom¹

"As a paradigm, allergen immunotherapy is 'specific', meaning that it only modifies the immune response against the allergen for which the vaccination is being performed."

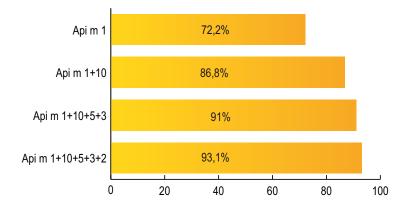
WAO - ARIA - GA²LEN Consensus Paper on Molecular-based Allergy Diagnostics²

Double positivity – is it a genuine bee and/ or wasp venom allergy?

- Positive results with venom extracts do not always reflect genuine sensitization³
- In many cases IgE antibodies to CCDs* cause double positivity, but rarely have clinical relevance^{1,3,4}

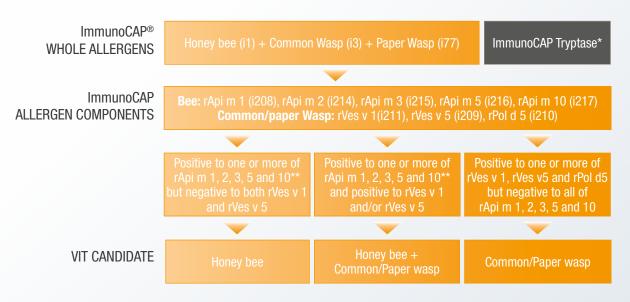
Up to **50%** of venom allergic patients have positive test results to both bee and wasp venom extracts³

*Cross-reactive Carbohydrate Determinants



Discover the new ImmunoCAP bee venom components

- Api m 3 and Api m 10 can be absent or underrepresented in VIT extracts^{5,6} – VIT of patients sensitized to these components may be less efficient
- Adding venom components rApi m 2, rApi m 3 and rApi m 5 to your test panel improves diagnostic specificity and supports more wellfounded decisions for VIT^{7,8}


ImmunoCAP bee venom components help improve diagnosis

Adding components to your test menu can help resolve double positivity and match VIT to the individual patient⁷

Percentage of patients with HBV sensitization detected by different combinations of HBV allergens (n=144). Adapted from Köhler et al.⁷

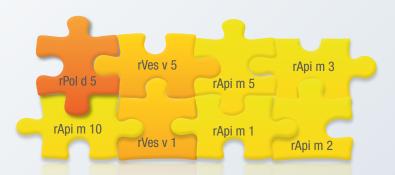
Identify suitable VIT – suggested test algorithm

"Tryptase should be measured in patients before starting venom SIT." EAACI, AAAI, WAO, ICON1,4,9-11

*Measure tryptase baseline levels before VIT to assess risk for severe reactions¹²

^{**}Api m 3 and Api m 10 can be underrepresented in VIT extracts^{5,6}

ImmunoCAP Allergen Components help you resolve double positivity


With eight CCD-free venom components you can

Distinguish between true co-sensitization to bee and wasp, and CCD-dependent cross reactivity^{1,4,13,14}

- Honey bee: rApi m 1, rApi m 2, rApi m 3, rApi m 5 and rApi m 10
- Common/paper wasp: rVes v 1, rVes v 5, rPol d 5

Help match venom immunotherapy to the patient's sensitization profile^{1,6,7}

"Detection of recombinant venom allergens can discriminate between genuine venom sensitization and cross reactivity due to CCDs in patients with double-positive IgE results from traditional venom tests that are based on allergen extract"

WAO - ARIA - GA²LEN Consensus Paper on Molecular-based Allergy Diagnostics²

A broad toolbox of ImmunoCAP Allergen Components

Over 100 allergen components that can help you:

- Assess risk of systemic reactions in patients with food allergy²
- Explain symptoms due to cross-reactivity²
- Identify the appropriate immunotherapy for the individual patient²

References: 1. Bonifazi F. et al & EAACI Interest Group on Insect Venom Hypersensitivity, Prevention and treatment of hymenoptera venom allergy: guidelines for clinical practice. Allergy 2005; 60: 1459-1470. 2. Canonica G.W. et al., A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013; 6(1): 17. 3. Spillner E. et al., Hymenoptera allergens: from venom to "venome". Frontiers in immunology 2014; 5: 1-7. 4. Biló B. et al & EAACI Interest Group on Insect Venom Hypersensitivity., Diagnosis of Hymenoptera venom allergy. Allergy 2005; 60: 1339-49. 5. Grunwald T. et al., Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3). J Allergy Clin Immunol 2006; 117: 848-54. 6. Blank S. et al., Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy 2011; 66: 1322-29. 7. Köhler J et al., Component resolution reveals additional major allergens in patients with honey bee venom allergy. J Allergy Clin Immunol 2014; 133: 1383-89. 8. Frick M. et al., rApi m 3 and rApi m 10 improve detection of honey bee sensitization in Hymenoptera venom —allergic patients with double sensitization to honey bee and yellow jacket venom. Allergy 2015; 70: 1665-68. 9. Simons FE. et al., International concencus on (ICON) anaphylaxis. World Allergy Organ J. 2014 May 30;7(1):9. 10. Simons FE. et al., World Allergy Organization Anaphylaxis Guidelines:2013 update of the evidence base. Int Arch Allergy Immunol. 2013;162(3):193-204. 11. Cox L. et al., Allergen Immunotherapy: A practice parameter third update. J Allergy Clin Immunol 2011;127(1):1-55. 12. Rueff F. et al., Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: Importance of baseline serum tryptase — a study of the EAACI Interest Group on Insect Venom Hypersensitivity. J Allergy Clin Immunol 2009; 124: 1047-54. 13. Müller U. et al., Hymenoptera venom allergy: analysis of double posit

thermoscientific.com/phadia

© 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Manufacturer; Phadia AB, Uppsala Sweden.

