The Relevance of Ara h 6 in Peanut Allergy

Introduction
The diagnosis of peanut allergy is greatly improved by using component resolved diagnostics (CRD) in the clinical work up of patients. By analyzing specific IgE antibodies (sIgE) to individual allergenic proteins in the peanut, the clinician obtains a better understanding of the underlying cause of the patient’s symptoms. Sensitization(s) are revealed as being caused by primary peanut sensitization in the case of sIgE to Storage Proteins, or as a consequence of cross-reactivity in the cases of sIgE to Ara h 8 and Ara h 9. With this information, the clinician can judge the influence of other sensitizations and gains support for assessing the risk for severe reactions and improved management of the patient.

Three peanut specific storage proteins (Ara h 1, Ara h 2 and Ara h 3) and two cross-reactive proteins (Ara h 8 and Ara h 9, respectively) are widely used as diagnostic tools in clinical practice. The storage protein Ara h 2 appears to be dominating in terms of both sensitization frequency and in eliciting clinical symptoms in peanut allergic patients. We now offer a test for a forth storage protein – Ara h 6 – which can contribute to an even higher certainty in the diagnosis of peanut allergy.

The nature of the Ara h 6 protein
Ara h 6 is a major peanut allergen showing similarity with Ara h 2 in many aspects. Both are storage proteins of the 2S albumin type that are heat stable and resistant to digestion in the gut, why they are associated with potentially systemic reactions. They are 58% similar on the amino acid level, and the IgE binding sites (epitopes) of Ara h 2 and Ara h 6 overlap to a large extent, although unique IgE binding epitopes of Ara h 6 have been demonstrated.

Both proteins are highly immunogenic and potent in functional assays such as histamine release and basophil activation tests.

Ara h 6 is a major peanut allergen in children and adults
Peanut allergic patients show early and frequent sensitization to Ara h 6. In children with diagnosed peanut allergy more than two thirds (65-98%) have detectable sIgE to Ara h 6, as indicated by studies performed in France, Austria, Spain, Finland and Holland.

In a pan-European study of both children and adults, 85% of subjects with early-onset peanut allergy (before 14 years of age) had elevated sIgE to any peanut storage protein, and of these 93% and 87% were positive to Ara h 2 and Ara h 6, respectively (calculated from). In studies on only adults, the frequency of Ara h 6 sensitization among peanut allergic subjects is shown to between 50% and 80% of patients.

Differential Ara h 6 vs Ara h 2 sensitization
Sensitization to Ara h 6 without concomitant Ara h 2 sensitization has been detected in up to 4% of study subjects, indicating that although sensitization to Ara h 6 and Ara h 2 is mainly overlapping, selective Ara h 6 sensitization does occur. Indeed, Ara h 6 sensitization in the absence of Ara h 2 sIgE was reported in five Dutch children of which three reacted in peanut challenge, and in a Swedish boy negative (<0.35 kUA/L) for sIgE to Ara h 1-3, who reacted with anaphylaxis to an oral peanut challenge.

In conclusion, although Ara h 2 and Ara h 6 are similar and sensitization to these is overlapping, exclusive Ara h 6 sensitization is seen in an important minority of patients.

Ara h 2 and Ara h 6 for improved diagnostic accuracy
In studies on Ara h 6, different preparation of the protein and different assay methods have been used, making comparisons difficult. Nevertheless, taken together the collective data demonstrate that Ara h 6 is an important marker of
peanut allergy, with a diagnostic accuracy similar to that of Ara h 2. The sensitivity of Ara h 6 is reported to range from approximately 60 to 90%, while the specificity is reported to be less varied, and generally above 95%. Several studies indicate that when used together, Ara h 2 and Ara h 6 can provide the highest diagnostic accuracy.

The importance of multiple storage protein sensitizations

Multiple sensitization to peanut storage proteins correlate not only with the probability of clinical symptoms per se, but is also associated with the symptom severity.

Although Ara h 2 is considered the most important peanut allergen many peanut allergic patients have additional sIgE directed against Ara h 1 and Ara h 3. A number of studies using several diagnostic methods (skin prick testing, immunoblot, in vitro IgE), have shown that the severity score in food challenges or reported symptoms to peanut intake, correlate with the number of sensitizations to storage proteins, including Ara h 6, suggesting that multiple sensitization to peanut storage proteins correlate with the symptom severity.

Thus, poly-sensitization to storage proteins appears to be indicative of more severe reactions. Multiple sensitizations to stable proteins may also be predictive of future symptoms in sensitized children. In longitudinal studies of Swedish children, the number of sensitizations at age four to storage proteins Ara h 1, 2, 3 and 6 and/or Ara h 9 (peanut LTP), correlated with allergic reactions to peanut intake at sixteen years of age.

Thus, it is conceivable that, by including all these peanut component tests in the diagnostic work up, the clinician can gain insight into the possible development of the patient’s allergic status.

References