Biological Evaluation of MILLIPLEX® MAP Human and Mouse Th17 Panels

Robert Keith*, Alex Munmun Banerjee, Tim Warmke, and Qiang Xiao

R&D Dept., EMD Millipore Corporation, St. Charles, MO. "Corresponding Author: Robert.Keith@merckgroup.com

Introduction

Th17 cells are recently discovered T helper cells that play important roles in the establishment and maximization of the capabilities of the immune system. We recently developed MILLIPLEX® MAP Human and Mouse Th17 multiplex assays for simultaneous measurement of the cytokines that are secreted from Th17 cells and/or regulate Th17 cell differentiation and activation. In this study, we used the two Th17 panels to analyze the cytokine secretion in human and mouse PBMCs stimulated with lipopolysaccharide (LPS), concanavalin A (Con A) or Phytohemagglutinin (PHA). We also examined the effect of Adiponectin pretreatment on the LPS- or Con A-induced PBMC response. We examined cytokine levels in human plasma from sepsis, rheumatoid arthritis and lupus patients and examined in vivo mouse plasma cytokine response to LPS treatment. Our results demonstrated that LPS, Con A or PHA treatments induced significantly increased secretion of many cytokines including Th17 cell specific cytokines from human and mouse PBMCs (e.g. IL-6, TNFα, IL-17A, IL-17F and IL-22). The diseased human and the in vivo LPS-treated mice plasma samples also expressed increased levels of Th17 cell specific plasma cytokines. Adiponectin may regulate certain LPS-induced or Con Ainduced cytokine secretion from PBMCs. In conclusion, the Th17 panels will be useful tools for Th17 cell-related cytokine profiling in various biological samples

LPS, a component of Gram-negative bacterial cell walls, stimulates the innate immune response via TLR (Toll-like receptor) 4. Con A and PHA are lectins which bind to cell membrane carbohydrates and induce cell agglutination and T-cell mitiosis and differentiation. Adiponectin, also called GBP-28, apth, Adipoo, and Acp30, is a novel adipose tissue-specific protein that has structural homology to collagen VIII and X and Complement factor C1q, and circulates in human plasma at high levels. There has been a reported adiponectin attenuation of the TNF or response in vivo which indicates an anti-inflammatory to fel for the protein (Xu et al., vivo which indicates an arth-inflammatory to fel for the protein (Xu et al.,

Methods

Luminex® 200 system. This is a compact unit consisting of an analyzer, a computer, and software (Luminex Corporation, Austin, TX). Microspheres. Magnetic microsphere beads were purchased from Luminex Corp. Each set of beads is distinguished by different ratios of two internal dyes yielding a unique fluorescent signature to each bead set. Capture antibodies were covalently coupled to the carboxylate-modified magnetic microsphere beads.

Sample Preparation. PBMCs (Bioreclamation) were thawed, washed and resuspended in RPMI Media (Gibco) containing 10% FCS and 1% Penicillin/Stretomycin at 1 million cells per mL. The PBMCs were aliquoted at one million cells per well and incubated overnight at 37°C. The next day either LPS, Con A or PHA (Sigma) was were added for final concentrations of 10, 20 or 20 µg/mL, respectively. For Adiponectin pretreatment studies, the Adiponectin (Sigma) was added to select wells to 10 µg/mL, final concentration, 5 min prior to the addition of LPS, Con A or PHA. Conditioned media was collected at various time points, centrifuged at 15,000 RPM for 10 min, and the cell-free supermatants were stored at -80°C prior to assaying in Multiplex format. Human disease plasma and in vivo LPS-challenged mouse plasma samples were obtained from Bioreclamation.

Immunoassay Protocol. The multiplex assay was performed in a 96-well plate. The detailed procedure is as follows: wet the plate with $150\,\mu$ L assay buffer for 10 min and decant. Add 25 μ L standards or samples, 25 μ L beads, 25 μ L assay buffer in sample wells or 25 μ L matrix in standard wells and incubate at 0.70 At 4°C. Wash the beads two times then add 25 μ L biotinylated detection Ab cocktail and incubate at RT for 1 hour. Add 25 μ L Streptavidin-Prycoerythrin and further incubate at RT for 30 min. Lastly, wash beads two times, add 100 μ L sheath fluid and read on Luminex instrumentations.

Results: Human Th17 Multiplex Panel

Table 1. Stimulation of Human PBMC

Human PBMCs were treated with LPS, Con A or PHA at 37°C for 48 hr and cell-free samples were collected and assayed as described. Approximate cytokine responses are indicated as (+) 40 to 100 pg/mL, (++) 101 to 1000 pg/mL or (++) 10000 pg/mL. Unstimulated samples were 0-40 pg/mL for most analytes.

Cytokine Response	LPS	Con A	PHA
IL-1β	+++	++	++
IL-2	+	+++	+++
IL-4		++	+
IL-5		++	+
IL-6	+++	+++	+++
IL-9		++	++
IL-10	++	++	++
IL-13		+++	++
IL-17A		++	++
IL-17F		+++	++
IL-21		+	+
IL-23	+	+	
IL-27	++	+	++
IL-31		++	++
IFNγ		+++	+++
GM-CSF	++	+++	+++
MIP-3α	++	++	++
TNFα	+++	+++	+++
TNFβ		++	++

Table 2. Stimulation of Human PBMC: Representative Study

Human PBMCs were treated with LPS or Con A alone or after 5 min pretreatment with Adiponectin then incubated for 48 hr at 37°C and cell-free samples were collected and assayed as described. Values are pg/mL.

og/mL			IL-17F	SM-CSF	IFNg	L-10 N	tiP-3a i	L-12p70	L-13	L-15	L-17A	L-22	L-9 II	L-1b	L-33 I	L-2 I	L-21	L-4	L-23	IL-5 I	L-6 I	L-17E	L-27	L-31	TNFa	NFb II	∟-28
ample	sample	A (ug/mL)	19	20	25	27	28	33	35	37	39	43	45	46	47	48	52	53	54	55	57	66	72	73	75	76	_
Unstimulated 0 h			34	32	10	10	15	27	67	- 5	0	135	10	2	3	- 7	10	36	194	3	101	0	103	29	17	16	- ;
10	r		12	32	6	1	7	4	16	0	0	29	0	4	0	4	3	17	123	3	76	0	0	0	19	0	
10	r		19	37	8	2	10	7	23	4	0	38	0	2	0	5	6	25	150	4	80	0	0	23	22	0	
481			61	37	76	11	24	42	107	8	6	187	10	5	11	33	23	47	366	5	106	0	201	37	29	19	
481			13	65	7	2	6	3	12	6	0	0	0	0	0	6	0	16	150	4	68	0	0	22	22	0	
481	r		13	0	10	2	6	3	16	0	0	30	0	0	0	7	0	16	176	0	75	0	0	0	24	0	
diponection Alone	- 1	0.2	40	49	48	12	18	26	81	5	0	157	10	4	6	31	13	40	298	3	88	0	137	27	24	0	
48 hr	2	0.2	16	58	8	3	8	5	11	3	0	34	0	2	2	6	5	15	132	0	75	0	0	30	22	15	
	3	0.2	18	0	24	2	10	7	24	3	0	51	7	2	3	10	6	16	132	3	74	0	44	33	26	0	
	1	0.4	16	0	16	10	9	8	26	3	0	81	6	3	0	34	4	17	0	3	74	0	51	0	16	0	
	2	0.4	12	0	7	2	6	3	10	0	0	0	0	0	0	5	0	13	132	0	69	0	0	24	23	0	
	3	0.4	15	53	10	2	7	3	16	3	0	16	0	2	0	9	0	0	114	3	80	0	37	0	32	0	
	1	10	29	61	38	12	17	13	53	7	0	92	5	3	4	36	8	22	132	0	121	0	92	30	34	0	
	2	10	14	73	10	3	12	4	13	3	0	37	5	0	0	7	3	16	123	0	107	0	34	21	36	0	
	3	10		48	23	4	15	5	25	- 5	0	48	0	0	- 3	- 6	3	15	141	0	117	0	55	27	40	0	
.PS alone	1	0	48	0	80	887	122	22	53	11	7	121	13	47	3	47	21	35	323	5	3471	0	264	42	1388	18	
48 hr	2	0	46	897	54	902	297	. 8	17	7	8	39	11	185	5	17	21	28	786		10000	0	270	31	2484	16	
	- 3	0	65	511	95	937	237	12	40		8	68	10	169	_/	20	23	48	786		10000	0	328	42	2389	20	
PS and Adiponectin	1	0.2	61	-0	67	861	248	18	78	. 8	. 8	121	12	44	8	50	26	41	434	5	3481	0	313	33	1709	23	
48 hr	- 2	0.2	113	704	80	917	611	14	27	10	10	53	14	150	3	17	22	31	1115		10000	0	345	38	3131	19	
	3	0.2	61	745	54	838	221	11	32	11	6	56	11	201	5	11	27	34	894		10000	0	317	47	2367	17	
	1	0.4	34	114	47	811	97	13	37	8	7	87	13	44	0	31	18	24	246	4	3160	0	217	31	1120	.0	
	2	0.4	53 88	503 424	45	790 822	232 247		21	10	0	41	12	120	3	12	22	24 35	636		×10000 ×10000	0	240	36	1942	15 21	
	3	0.4			65			13	41			66			3	14			1017				294	42			
	1	10	48	63	101	873	360	13	46	14	11	115	14	62	7	65	24	29	315		10000	0	246	29	2078	.0	
	2	10	101	877 775	119	869 950	657 802	14 18	28 31	8	10	56	15	133	4	20	25 26	30	1075		×10000 ×10000	0	306 386	44	3032 3417	15	
Con A alone	3	10			>40000	941	552			10		184	371	148	14	3160						0	472	35	3417	1717	-
Jon A alone 48 hr	1 1	0	1581	3306	9400	130	133	36	5091 2105	20	263			501		2689	47	1315	753 661	988 631	708 472	0			4513	529	
40 III			781	1636	10032	136	78	17	1815	10	97 41	66 54	68 38	35	6	621	37	984	349	706	290	0	134	76 58	4329	409	
Con A and Adiponectin				2475							78		48	154	- 0	2220		1212	409	712		0		55	4740		
Jon A and Adiponectir 48 hr	1 :	0.2	1040	2303	10008	102 126	161 156	20 25	2203 2561	12	78 45	72 64	48	154	7	1961	51	1414		1008	317 306	0	129		>10000	487 520	
+0 III	1 1	0.2	702	2303 3051	10249	93	403	25 26	2099	15	45 57	72	49	81		4332		1319	443	420	391	0	183		>10000	404	
				2363		121	187					65	47	109		2085		1279		920	458						
	2	0.4	1186 2549		11910		749	29	2463	13	64 354	182				4744			485 778		1700	0	183		×10000	518	
	1	10				909		30	4960 2083				353	336				1184		939		0			>10000 >10000	1914	
	2	10	1472	2141	10438	99	214	20		12	75 47	65	48	199		1998		1035	460	613	1015		175			476	
	3	10	821	2325	9997	110	159	26	2538	9		44	49	85		1835		1176	485	954	304	0	204		>10000	593	

Table 3. Human Disease Samples

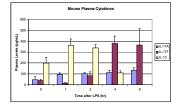
Human disease plasma samples were obtained from Bioreclamation and assayed in the Human Th17 Panel as described. Values are the sample range in pg/mL for 16 sepsis, 4 rheumatoid arthritis (RA) and 4 lupus samples

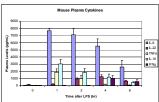
Cytokine Response	Sepsis (n=16)	RA (n=4)	Lupus (n=4)
IL-1β	0-129	0-143	0-30
IL-2	0-160	0-514	0-108
IL-4	0-735	0-3	ND
IL-5	0-88	0-5	ND
IL-6	31-703	0-373	0-11
IL-9	0-185	0-143	ND
IL-10	0-1603	0-2	0-8
IL-12p70	0-126	0-185	0-23
IL-13	12-300	0-11	0-1
IL-15	9-80	0-89	0-13
IL-17A	0-111	0-1	ND
IL-17E/IL-25	0-12479	0-18634	0-951
IL-17F	15-1038	0-1237	0-79
IL-21	22-254	0-34	0-3
IL-22	37-2042	0-729	ND
IL-23	0-13183	0-12472	0-1685
IL-27	2333-17179	505-8777	429-804
IL-28A	200-2974	0-1123	1-313
IL-31	0-4614	0-3013	0-17
IL-33	0-1202	0-320	0-10
IFNγ	0-445	0-30	ND
GM-CSF	61-3262	0-1493	0-320
MIP-3α	48-1207	0-127	7-48
TNFα	20-4355	4-72	2-16
TNFβ	0-386	0-474	0-13

Results: Mouse Th17 Multiplex Panel

Table 4 Stimulation of Mouse PBMC

Mouse PBMCs were treated with LPS, Con A or PHA at 37°C for 48 hr, then cell-free samples were collected and assayed as described. Approximate cytokine responses are indicated as (+) 1 to 20 g/min. (++) 21 to 500 pg/mil. Or (+++) >500 pg/mil. Unstimulated samples were not detectable for most samples except IL-6 at approximately 30 g/mil.


Cytokine Response	LPS	Con A	PHA
IL-1β	+		
IL-2		+	+
IL-4		+	
IL-5	+		
IL-6	+++	++	++
IL-10	+		
IL-17A		++	+
IL-17F		++	+
IL-22		+	
MIP-3α	+		
TNFα	++		


Table 5 . in vivo LPS Effect on Mouse Plasma Cytokine Levels

8-12 week old CD-1 Mice were injected with 1 mg/kg E.Coli 055:B5 LPS (Sigma-Aldrich) suspension in saline, IP, disodium EDTA plasma was collected at various time points and assayed as described. N=8, pg/mL (SEM)

hr	IL-1β	IL-6	IL-10	IL-12p70	IL-13	IL-15
0	3 (3)	31 (22)	53 (16)	44 (17)	198 (55)	57 (5)
1	11 (3)	7648 (352)	3053 (591)	106 (38)	363 (58)	75 (17)
2	102 (46)	7129 (871)	1855 (516)	80 (12)	339 (30)	48 (5)
4	60 (13)	5542 (1017)	1192 (429)	77 (10)	108 (20)	44 (6)
6	20(6)	2616 (921)	442 (93)	114 (29)	0 (0)	124 (48)
hr	IL-17A	IL-17E	IL-17F	IL-22	IL-23	IL-27
0	45 (26)	3914 (1456)	40 (8)	158 (34)	460 (120)	1383 (494)
1	94 (14)	6049 (694)	15 (6)	190 (96)	962 (190)	2093 (535)
2	102 (11)	6392 (476)	82 (37)	923 (163)	680 (77)	2183 (433)
4	113 (21)	5044 (617)	379 (69)	1278 (250)	612 (70)	1961 (384)
6	132 (22)	3590 (510)	365 (151)	661 (84)	538 (48)	2805 (992)
hr	IL-28B	CD40L	GM-CSF	IFNg	MIP-3a	TNFa
0	137 (15)	157 (24)	45 (20)	20 (12)	96 (19)	20 (6)
1	171 (38)	167 (48)	70 (12)	27 (10)	157 (73)	1871 (489)
2	239 (59)	131 (8)	188 (52)	38 (9)	3307 (758)	1017 (376)
4	199 (17)	110 (5)	57 (13)	1052 (370)	8360 (5979)	164 (42)
6	228 (45)	201 (26)	39 (12)	592 (246)	352 (61)	70 (20)

Figures 1 & 2 . in vivo LPS-effect on Mouse Plasma Cytokine levels. Data from Table 3

Summary

- •LPS, Con A or PHA treatment induced secretion of cytokines from Human or Mouse PBMC including Th17 cell specific cytokines.
- Human sepsis, RA and lupus plasma samples contain significant levels of many cytokines including Th17 cell specific cytokines.
 Mouse in vivo LPS-stimulated plasma samples contain significant levels of many cytokines including Th17 cell specific cytokines.
- Adiponectin may regulate cytokine secretion from PBMC.

MILLIPLEX Th17 panels are powerful tools for cytokine profiling in biological samples

References:

- 1. Korn T, et al, IL-17 and Th17 Cells, Annu Rev Immunol 27:485-517 (2009).
- 2. Xu A, et al, The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic liver diseases in mice, J Clin Invest 112:91-100 (2003).